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 Power transferred through a large air-gap between primary and secondary
— Very weak magnetic coupling (less than 40% typically)

* Three stage conversion process
— Grid to DC: PFC or soft-DC bus
— DC to HF AC: Full-bridge, half-bridge or push-pull
— HF AC to DC: Passive or AC controllers of buck or boost type

e Compensation networks improve power transfer
— Reduce VA rating of the converters
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e Uni-directional power flow
— Allows for charging of EVs and limited ancillary services



Standard BD-IPT Systems
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e Identical primary and pick-up circuits employing inductor-capacitor-inductor (LCL) T-
resonant networks
— Full-bridge converters operated as a frequency f, to drive the resonant networks
— LCL networks tuned to the fundamental switching frequency f

e Power flow
— Phase-shift between converters
v Regulates both the magnitude and direction of power flow
— Phase-modulation applied to each converter
v Regulates the magnitude of power flow
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 Low-frequency inverter provides a bi-directional power interface with the grid



Control of Converters e
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e Qutput voltages, produced by
converters, are controlled using
phase-modulation
— Each leg of the H-bridge operated at

50% duty-cycle
— Both H-bridges are operated at same
switching frequency, f, = w./2n

— Phase-modulation (®, and ®.) between
the two legs controls the output voltage

e Direction of Power flow is regulated
by controlling phase-shift () between
the voltages produced by two
converters

— A lagging phase-shift corresponds to
power transfer from input to output

— A leading phase-shift corresponds to
power transfer from output to input ﬁ
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e |dentical primary and pick-up circuits employing series-tuned networks
— Full-bridge converters operated at a frequency f; to drive the resonant networks
— Capacitors and pads inductances tuned to the fundamental switching frequency f,

e Power flow
— Phase-shift between converters
v Regulates both the magnitude and direction of power flow
— Phase-modulation applied to each converter
v Regulates the magnitude of power flow
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 Alow-frequency inverter provides bi-directional power interface with the grid
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Primary Controller Pick-up Controller

e Identical primary and pick-up circuits each employing a PPRC
— Switches operated below the natural resonant frequency to achieve ZVS

e Power flow
— Phase-shift between converters
v’ Regulates both the magnitude and direction of power flow

— On-off control applied to each converter
v’ Regulates the magnitude of power flow
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Spatial Tolerance
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A Hybrid BD-IPT System
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 Properties of LCL and CL tuning combined to achieve a system
immune to misalignment
— Maintains a near constant output power with near 0 VAR loading

e Simplify control and improves efficiency
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Simulation results
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e Output power maintained with +/- 5% for 40 )
mm Z-displacement and 150 mm X- oy
displacement 0 B = o et S
— Open loop control at 100% modulation index 90 N
— Power can be further regulated through ) IR
modulating the switches 89 Y
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e High efficiency as the LCL-LC system facilitate T W w w @ w0 o
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Optimum Control
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Mutual Inductance(H)

e Self & mutual inductances vary over a 3-D space of misalignment
— Detunes the system increasing losses and reducing power throughput
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 Relative phase-angle, operating frequency, phase-modulation and
dead-time can be varied to improve performance

— Ex: System can be retuned by changing the relative phase-angle
— Evaluation of optimum control parameters and close-loop control
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System Efficiency vs Inductance for Simulated Results
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Ancillary Services




Direct LFAC to HFAC
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 Employs a matrix or back-back converter for direct grid integration
— Does not require a large filter inductor or DC-link capacitors
— Reduced number of conversion stages
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e Complicated control strategies required to ensure reliable operation



VAR & Harmonic Control
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v’ Can be the super-capacitor of a hybrid-storage system

e Can provide ancillary grid services
— PF correction and VARs through AC side storage
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